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Collective Decision Problem

n individuals must choose one among several alternatives
Each individual has a private, cardinal, single-peaked preference
over alternatives
Monetary transfers are limited
Designer’s problem: find a mechanism that maximizes the sum of
the individuals’ expected utilities

– strategy proof or dominant strategy incentive compatibility (DIC)
– without transfers: DIC mechanisms must be voting mechanisms

(depending only peaks)
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Median in the Babylonian Talmud

If one (of three appraisers) says 100, and two say 200, or
one says 200 and two say 100, then the majority rules. If one
says 100, one says 80, and one says 120, then the judgment
is 100.

— Babylonian Talmud, Baba Bathra 107a

Both the one who says 80, and the one who says 100,
agree that the value is at most 100; the other, who says 120,
is just one, and one does not prevail against two. And both
the one who says 100, and the one who says 120 agree that
the value is at least 100; the other, who says 80, is just one,
and one does not prevail against two.

— Yad Ramah, Rabbi Meir Halevi Abulafia, 1170 –1244
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Single-Peaked Preferences

Sidestep the Gibbard-Satterthwaite Impossibility Theorem
Black (1948):

– mechanism that selects median peak is Pareto optimal,
anonymous, and dominant strategy incentive compatible (DIC)

Moulin (1980):

– any Pareto optimal, anonymous, and DIC mechanism is a
generalized median
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Generalized Median

Moulin (1980): AN, PO and DIC mechanism with n voters
⇔ generalized median with (n− 1) “phantoms”

– distribute (n− 1) phantoms prior to voting among certain
alternatives, and pick median of (n− 1) phantom and n real votes

– generalized median = phantom distribution {`k} with
∑
`k = n− 1

Classical median with n = 2m + 1 voters

– place m phantoms at the left extreme, another m at the right extreme

“Left-dictator” mechanism with 2m + 1 voters

– place 2m phantoms at the left extreme alternative

Two-thirds supermajority to adopt “reform” with 3m voters

– place 2m− 1 phantoms at “status quo”, the remaining m at “reform”
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Our Contribution

We show that any generalized median can be implemented by
modifying the successive voting procedure commonly used in
European parliaments

We derive incentive-compatible welfare-maximizing mechanism
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Related Papers (Partial List)

Literature following up Moulin (1980):

– Barbera, Gul & Stacchetti (1993), Barbera & Jackson (1994), Ching
(1997), Chatterji & Sen (2011)

– Ehlers, Peters & Storcken (2002), Nehring & Puppe (2007)
– Shummer & Vohra (2002), Dokow et al. (2012)
– Saporiti (2009): single-crossing preferences

Successive voting procedure

– parliament voting: Rasch (2000)
– public good provision: Bowen (1943), Green and Laffont (1979)
– monetary committees: Riboni and Ruge-Murcia (2010)

Optimal voting rules

– two alternatives: Schmitz & Troger (2012), Azrieli & Kim (2014)
– three alternatives: Borgers & Postl (2009)
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Model Setup: One Dimensional, Private Values

n agents choose one out of K alternatives: K = {1, ...,K}

Agent i observes private signal xi: (x1, ..., xn) ∼ Φ on [x, x]n

Utility uk (xi): not necessarily increasing in xi

No monetary transfers
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Model Setup: Single-Crossing Preferences

Single-crossing utilities w.r.t. the order of alternatives:

– ∀k, l with k < l, exist cutoff xl,k with uk
(
xl,k
)

= ul
(
xl,k
)

such that{
uk (xi) > ul (xi) if xi < xk,l

uk (xi) < ul (xi) if xi > xk,l

Each alternative is the top alternative for some type:

– for any k ∈ K, there exists xi ∈ [x, x] such that

uk (xi) > max
l∈K,l 6=k

ul (xi)

Let xk ≡ xk−1,k. Then these assumptions imply that
1 cutoffs are well ordered: x ≡ x1 < ... < xK < xK+1 ≡ x
2 agents’ preferences are single-peaked

Designer maximizes sum of expected utilities subject to IC
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Incentive Compatibility

We focus on deterministic direct mechanisms

Direct mechanism g : [x, x]n → K = {1, ...,K}

A mechanism is dominant strategy incentive compatible (DIC) or
strategy proof if for any player i and for any xi, x′i and x−i:

ug(xi,x−i) (xi) ≥ ug(x′i ,x−i) (xi)
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Linear Example

Linear utility: uk (xi) = ak + bkxi with bK > bK−1 > ... > b1 ≥ 0

Cutoff type xl,k is indifferent between l and k :

xl,k ≡ al − ak

bk − bl
, and xk ≡ xk−1,k =

ak−1 − ak

bk − bk−1
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Remark

Alternative 4

Alternative 3

Alternative 2

Alternative 1

2,1x 3,2x 4,3x

4,1x

ix

),( ixku

Agents’ preferences are single-peaked
But not all single-peaked preferences are compatible with linear
preferences!
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Example: First-Best Allocation Rule Is Not DIC

Two alternatives {1, 2} and two agents {i,−i}
Planner is indifferent between 1 and 2 if

2a1 + b1 (xi + x−i) = 2a2 + b2 (xi + x−i)

First-best rule (maximizing sum of utilities) is monotone:

g (xi, x−i) =

{
1 if (xi + x−i) /2 ∈ [0, x2)
2 if (xi + x−i) /2 ∈ [x2, 1]

with x2 ≡ (a1 − a2) / (b2 − b1)

Suppose (xi, x−i) =
(
x2 + ε, x2 − 2ε

)
: g (xi, x−i) = 1, but i can gain

by reporting x′i > x2 + 2ε
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Parliamentary Voting Procedures (Rasch, 2000)

Successive Procedure Amendment Procedure
(alternatives voted “one-by-one”) (alternatives voted “two-by-two”)
Austria, Belgium, Czech Republic, Canada, Finland, Sweden,
Denmark, France, Germany, Greece, Switzerland, United Kingdom,
Hungary, Iceland, Ireland, Italy, USA
Luxembourg, Netherlands,
Norway, Poland, Portugal,
Slovakia, Slovenia, Spain,
European Parliament
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Successive Voting Procedure

Voting on alternatives, one by one, in a pre-specified order
If alternative 1 gets support of majority, it is adopted and voting
ends. If alternative 1 fails, it is removed and the process proceeds
to alternative 2

If no alternative gains majority in earlier stages, the last two
alternatives are paired and the one with majority support is
adopted
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Successive Voting Procedure

Consider 4 alternatives with voting order: a, b, c, d

{a} {b,c,d}

{c,d}{b}

vs.

vs.

{c} {d}vs.

{a,c,d} {b,c,d}vs.

{c,d}{a,d} vs.

{d}{a} vs. {d}{c} vs.

{c,d}{b,d} vs.

{d}{b} vs. {d}{c} vs.3rd ballot

2nd ballot

1st ballot

Successive Procedure Amendment Procedure
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Modified Successive Voting

Alternatives are arranged in the natural order of 1, 2, ...,K under
which preferences are single-peaked

– natural if alternatives have numerical scale: public good, interest
rate, tax, minimum wage

The required majority is not constant across alternatives:
threshold τ (k) for choosing alternative k (and stop) is decreasing

– qualified majority
– different voter thresholds for different local government charges
– voter-approval requirements for local charges in California

� non-tax charges (exempt from voter approval)
� general tax (simple majority)
� special tax (two-thirds)
� property tax to finance infrastructure bonds (two-thirds), to finance

school facility bonds (55%)
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Sincere Voting Equilibrium

A voting strategy for agent i is sincere if, at each stage, the agent
votes in favor of the respective alternative if and only if it is the
best (among the remaining alternatives) given his preferences

Proposition. Sincere voting by all agents constitutes an ex-post perfect
Nash equilibrium in a successive voting procedure with decreasing
τ (k). It is the unique outcome that survives iterated elimination of
(weakly) dominated strategies.
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Anonymity and Pareto Efficiency

A mechanism g is anonymous if for any x ∈ [0, 1]n

g (x1, ..., xn) = g
(
xσ(1), ..., xσ(n)

)
where σ denotes any permutation

of the set {1, ..., n}

A mechanism g is Pareto efficient if for any x ∈ [0, 1]n there is no
alternative k ∈ K such that uk

i (xi) ≥ ug(x)
i (xi) for all i, with strict

inequality for at least one agent
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Dynamic Implementation of Static DIC Mechanisms

Theorem
1 For any anonymous, Pareto efficient, and DIC mechanism g, there

exists a decreasing threshold function τ g (k) with τ g (k) ≤ n for any
k ∈ K and τ g (K) = 1 such that, for any realization of types, the
outcome of g coincides with the outcome in the sincere equilibrium
of successive voting with thresholds τ g (k).

2 Conversely, for any decreasing threshold τ (k) with τ (k) ≤ n for
any k ∈ K and τ (K) = 1, there exists an anonymous, Pareto
efficient, and DIC mechanism gτ such that, for any realization of
types, the outcome of gτ coincides with the outcome in the sincere
equilibrium of successive voting with thresholds τ (k).
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Coalition Interpretation of Generalized Median

Simple median with 2m + 1 voters:
– choose alternative k if

#
{

i|xi < xk} ≤ m and #
{

i|xi > xk+1} ≤ m

– choose alternative k such that

k = min
{

k̃ : #{i|xi ≤ xk̃+1} ≥ m + 1
}

Generalized median g with n voters and phantom distribution {`k}

k = min

k̃ : #{i|xi ≤ xk̃+1} ≥ n−
k̃∑

m=1

`m


Successive voting with adopting threshold τ g (k):

τ g (k) ≡ n−
k∑

m=1

`m
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Optimal Mechanisms

Utilitarian planner

– maximize the sum of the agents’ expected utilities

max
k

E
∑

i
uk (xi)

– number of feasible decreasing threshold functions:

(n + K − 2)!

(K − 1)!(n− 1)!

Combinatorial optimization problem
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General Case

Assumption A: Agents’ signals are i.i.d. on [0, 1] according to F

Assumption B: The function

β (k) =

(
uk

x>xk − uk−1
x>xk

)
(

uk−1
x<xk − uk

x<xk

)
+
(

uk
x>xk − uk−1

x>xk

) , k ≥ 2

is decreasing, where

ul
x<xk = E

[
ul (x) |x < xk] and ul

x>xk = E
[
ul (x) |x > xk]

Intuition: rewrite definition of β (k) as

β (k)
(

uk−1
x<xk − uk

x<xk

)
︸ ︷︷ ︸

gain from switching to k−1

+ [1− β (k)]
(

uk−1
x>xk − uk

x>xk

)
︸ ︷︷ ︸

loss from switching to k−1

= 0
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Optimal Thresholds

Theorem
Under Assumptions A and B, the sincere equilibrium of the successive
procedure with thresholds

τ∗ (k) =

{
dnβ (k + 1)e if k < K

1 if k = K

implements the optimal anonymous, Pareto efficient, and DIC
mechanism.

Idea of proof, assuming τ∗ (k − 1) > τ∗ (k):

– increasing τ∗ (k) by 1 lower welfare⇒ τ∗ (k) ≥ nβ (k + 1)
– decreasing τ∗ (k − 1) by 1 lower welfare⇒ τ∗ (k − 1) ≤ nβ (k) + 1

Assumption B: restrictions also valid when τ∗ (k − 1) = τ∗ (k)
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Linear Case

Assumption B’: Distribution F has decreasing mean residual life
(E [X − x|X > x]↘ x) and increasing reversed mean residual life
(E [x− X|X < x]↗ x)

– implied by log-concave density; imply a decreasing β (k)

Corollary
Suppose utilities are linear and Assumptions A and B’ hold. The
optimal thresholds are

τ∗(k) =

{
dnβ (k + 1)e if k < K

1 if k = K

Intuition: choose generalized median to make “mean voter” pivotal

nβ (k + 1)︸ ︷︷ ︸
voters for k

E
[
X|X < xk+1]+ (n− nβ (k + 1))︸ ︷︷ ︸

voters for k+1

E
[
X|X > xk+1] = nxk+1
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Correlated Types

Linear utility setting:

– underlying states s ∈ {1, ..., S}, with probability
∑S

s=1 ps = 1
– conditionally independent types: xs ∼ Fs, s = 1, ..., S

We can still implement generalized median via successive voting
Analysis of optimal voting rules becomes more complicated,
because pivotal events reveal information about underlying state

Proposition. Assume that X1 ≤lr X2 ≤lr ... ≤lr XS and that each Xs

satisfies Assumption B’. Suppose βS (k + 1) ≤ β1 (k) for all k. Then the
optimal threshold τ∗ (k) is the unique integer that satisfies the two
necessary restrictions generated by local deviations.
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Large Societies

Optimal mechanism attains the first-best welfare as n→∞
– consider mechanism with fixed threshold t : F

(
xk∗
)
< t < F

(
xk∗+1

)
Linear utility

– maximizing average utility = maximizing utility of the mean voter
– F (µ)-majority for adoption: β

(
xkµ
)
< F (µ) < β

(
xkµ+1

)
– lognormal distribution with Gini η ∈ [0.25, 0.55]: F (µ) ∈ [0.58, 0.68]

Correlated types (example)

– fixed threshold policy cannot attain the first-best
– but a flexible threshold policy can
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Public Good Provision

n agents with preference for public good: ui = xiG/
√

n + Zi

– pubic good G, private consumption Zi

– factor 1/
√

n captures the negative effect of congestion

Individual budget constraint: Mi = Zi + G2/ (2n)

– endowment Mi, shared quadratic cost of production G2/ (2n)
– individual utility maximization: G∗i =

√
nxi

Simple majority Gsm =
√

nxsm, where xsm is sample median
Voting on successive increments, analogous to Bowen (1943):

– require 1− β (x) proportional support for further increase over
√

nx
– with large population, Gsµ =

√
nxsµ, where xsµ is sample mean
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Concluding Remarks

We characterize constrained efficient DIC mechanisms

– single-crossing preferences but no transfers
– our characterization enables a systematic choice among

Pareto-efficient mechanisms
– implement static Pareto efficient DIC mechanisms via a dynamic

voting procedure

Bayesian incentive compatibility? stochastic mechanisms?
Two or more dimensions: work in progress
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